
On Computing Straight Skeletons by Means of

Kinetic Triangulations⋆

Peter Palfrader1, Martin Held1, and Stefan Huber2

1 FB Computerwissenschaften, Universität Salzburg, A-5020 Salzburg, Austria
2 FB Mathematik, Universität Salzburg, A-5020 Salzburg, Austria

{ppalfrad,held,shuber}@cosy.sbg.ac.at

Abstract. We study the computation of the straight skeleton of a planar
straight-line graph (PSLG) by means of the triangulation-based wave-
front propagation proposed by Aichholzer and Aurenhammer in 1998,
and provide both theoretical and practical insights. As our main theo-
retical contribution we explain the algorithmic extensions and modifica-
tions of their algorithm necessary for computing the straight skeleton of
a general PSLG within the entire plane, without relying on an implicit
assumption of general position of the input, and when using a finite-
precision arithmetic. We implemented this extended algorithm in C and
report on extensive experiments. Our main practical contribution is (1)
strong experimental evidence that the number of flip events that occur
in the kinetic triangulation of real-world data is linear in the number n
of input vertices, (2) that our implementation, Surfer, runs in O(n log n)
time on average, and (3) that it clearly is the fastest straight-skeleton
code currently available.

1 Introduction

1.1 Motivation

The straight skeleton of a simple polygon is a skeletal structure similar to the
generalized Voronoi diagram, but comprises straight-line segments only. It was
introduced to computational geometry by Aichholzer et al. [1], and later general-
ized to planar straight-line graphs (PSLGs) by Aichholzer and Aurenhammer [2].
Currently, the most efficient straight-skeleton algorithm for PSLGs, by Eppstein
and Erickson [7], has a worst-case time and space complexity of O(n

17/11+ǫ) for
any ǫ > 0. For a certain class of simple polygons with holes Cheng and Vi-
gneron [6] presented a randomized algorithm that runs in O(n

√
n log2 n) time.

However, both algorithms employ elaborate data structures in order to achieve
these complexities and are not suitable for implementation.

The first comprehensive straight-skeleton code was implemented by Cacci-
ola [4] and is shipped with the CGAL library [5]. It handles polygons with holes
as input, and requires O(n2 logn) time and O(n2) space for real-world datasets,

⋆ The authors would like to thank Willi Mann for valuable discussions and comments.
Work supported by Austrian FWF Grant L367-N15.

see [10] for an explanation and experimental analysis. The code Bone by Huber
and Held [10] has been, until now, the fastest implementation. It handles PSLGs
as input and runs in O(n logn) time and O(n) space in practice.

The algorithm by Aichholzer and Aurenhammer [2] propagates a wavefront
by means of kinetic triangulations and it can handle PSLGs as input. No better
complexity bound than O(n3 logn) has been established so far, due to only a
trivial O(n3) upper bound on the number of flip events that might occur in the
triangulation in the worst case, even though no input is known that requires
more than O(n2 logn) time. The basic algorithm is suitable for implementation,
but no full implementation has been published. In fact, if general position can-
not be assumed then one needs to fill in algorithmic gaps prior to an actual
implementation. For instance, the basic algorithm of [2] may loop if multiple
concurrent events are not processed properly, even if exact arithmetic is used.

Our contribution. We thoroughly investigate Aichholzer and Aurenhammer’s
triangulation-based approach [2] both from a theoretical and a practical point of
view. We start with a discussion of our extensions to their basic algorithm, which
are necessary in order to handle arbitrary PSLGs. In particular, we present a
procedure for resolving a loop of events in the kinetic triangulation, we report
on technical details concerning unbounded triangles in order to triangulate the
entire plane, and we discuss how to handle parallel edges in G that lead to
infinitely fast vertices in the kinetic triangulation. Besides these extensions, we
address a major open question raised by Aichholzer and Aurenhammer [2]: How
many flip events shall we expect to occur in the kinetic triangulation of practical
data?

We implemented the basic algorithm and our extensions in C, and present
extensive statistics based on test runs for about 20 000 industrial and synthetic
datasets of different characteristics. As first important practical contribution
we provide strong experimental evidence for Aichholzer and Aurenhammer’s
conjecture that only O(n) flip events suffice for all practical datasets.

Our code, Surfer, can be run with two arithmetic back-ends: (i) with double-
precision floating-point arithmetic, and (ii) with the extended-precision library
MPFR [8]. Tests clearly show that Surfer runs in O(n log n) time for all our
datasets. Furthermore, it is reliable enough to handle datasets of a few million
vertices with floating-point arithmetic. In comparison with the code provided
by CGAL, Surfer has several advantages: (i) it is by a linear factor faster in
practice, (ii) it can handle PSLGs as input, and (iii) its space complexity is in
O(n). Furthermore, even though the worst-case complexity of Surfer is worse
than that of Bone [10], our code turns out to be faster by a factor of 10 in
runtime tests.

1.2 Preliminaries and Basic Definitions

Definition of the straight skeleton. Aichholzer et al. [1] defined a straight skeleton
S(G) of a PSLG G based on a so-called wavefront propagation process. The
idea is that every edge of G sends out two wavefront copies that move in a

parallel fashion and with constant speed on either side, see Fig. 1. Consider a
non-terminal vertex v of G: As the wavefront progresses, wavefront vertices, i.e.,
copies of v, move along angular bisectors defined by pairs of consecutive edges
(in the cyclic incidence order) that are incident at v. At a terminal vertex v of G
an additional wavefront edge orthogonal to the incident input edge is emanated
such that the wavefront forms a rectangular cap at v. (It is assumed that G
contains no isolated vertices.)

split event

edge event

Fig. 1. A PSLG G, wavefronts WG(t) in
gray for different times t, and the straight
skeleton S(G).

We denote by WG(t) the wave-
front at time t and interpret WG(t) as
a 2-regular graph which has the shape
of a mitered offset curve of G. Dur-
ing the propagation ofWG topological
changes occur:

– An edge event occurs when a
wavefront edge shrinks to zero
length and vanishes.

– A split event occurs when a reflex
wavefront vertex meets a wave-
front edge and splits the wave-
front into parts. We call a wave-
front vertex reflex if the angle of the incident wavefront edges on the prop-
agation side is reflex.

The straight skeleton S(G) is then defined as the union of loci that are traced
out by the wavefront vertices, see Fig. 1. Every vertex of S(G) is due to an event.

The triangulation-based algorithm. The idea that drives the triangulation-based
algorithm by Aichholzer and Aurenhammer [2] is to keep for any t ≥ 0 the
area R

2 \
⋃

t′<t WG(t
′) triangulated. In other words, they maintain a kinetic

triangulation of those parts of the plane that have not yet been swept by the
wavefrontWG. Every edge event and every split event is indicated by the collapse
of a triangle as either (i) a wavefront edge collapsed to zero length or (ii) a
wavefront vertex met a wavefront edge. Hence, the topological changes of the
wavefront are indicated by the topological changes of the kinetic triangulation.
However, some topological changes of the kinetic triangulation do not correspond
to a wavefront event, namely when a reflex wavefront vertex meets an inner
triangulation edge. One needs to flip this edge in order to maintain a valid
triangulation. Hence, these events are called flip events. We follow the notation
of Aichholzer and Aurenhammer and call an inner triangulation diagonal a spoke

in the remainder of this paper.
Their algorithm starts with a constrained triangulation of G and adapts it to

a triangulation for the initial wavefrontWG(0) by duplicating the edges of G and
inserting zero-length edges that are emanated at terminal vertices of G. For every
triangle a collapse time is computed. If a triangle collapses in finite time it is
put into a priority queue Q prioritized by its collapse time. Then one event after
the other is fetched from Q in chronological order, and the necessary topological

changes are applied to the kinetic triangulation. Eventually, Q is empty as no
further triangle is collapsing in finite time. At that point all straight-skeleton
nodes were computed.

Note that there are O(n) edge and split events as S(G) is of linear size. An
edge and split event locally changes the topology of the wavefront and adapts
the velocities of some vertices. Consequently, the collapse times of all incident
triangles need to be recomputed. Hence, a single edge or split event may require
O(n logn) time, which leads to O(n2 logn) as total time complexity for all edge
and split events.

The signed area of a triangle can be expressed as quadratic polynomial in t
and, hence, a single triangle can collapse at most at two single points in time. As
there are at most

(

n
3

)

combinatorial possibilities for triangles among n vertices
over the entire simulation time, there are at most O(n3) flip events. This is the
best known bound. A single flip event requires O(1) modifications in Q and,
thus, can be handled in O(log n) time. In total, the algorithm has a worst-case
complexity of O((n2 + k) logn) ⊆ O(n3 logn), where k ∈ O(n3) denotes the
number of flip events. However, no input is known that causes more than O(n2)
flip events.

2 Handling Unbounded Triangles

If the entire straight skeleton of a general PSLG G is to be computed, one has
to ensure that the initial triangulation covers a portion of the plane that is large
enough to contain all nodes of S(G). The natural idea of computing S(G) inside
of a “large” box or triangle is difficult to cast into a reliable implementation for
two reasons: First, no efficient method is known for computing a good upper
bound on the maximum distance of a node of S(G) from G. Second, picking a
truly large box might be a heuristic attempt to ensure coverage for all practically
relevant needs but it will result in lots of very skinny triangles. These triangles
are difficult to process correctly on a finite-precision arithmetic, and they place
a burden on floating-point filters used to speed up exact geometric computing.

Therefore we construct a triangulation of the entire plane as follows: First,
we compute a constrained Delaunay triangulation of G inside of its convex hull,
CH(G). Then we attach an unbounded triangle to every edge of CH(G). Such
an unbounded triangle has one finite edge on CH(G) and two unbounded edges.
These unbounded edges are thought to meet at infinity.

While computing the collapse time of a (finite) triangle with three vertices
moving at constant speed amounts to solving a quadratic equation in one vari-
able, it is less obvious how to deal with unbounded triangles. We note that it is
not sufficient to regard an unbounded triangle as collapsed only if its finite edge
has shrunk to zero length. This would allow unbounded triangles to move to the
interior of the wavefront, causing us to miss events that change the topology of
the wavefront later on: The left part of Fig. 2 depicts a portion of a PSLG G
(in bold) such that the input edges, or wavefronts, w1, w2, w3 and the spokes
s1, s2 lie on CH(G). If the angles at the reflex wavefront vertices are chosen

w1

s1
w2

s2

w3

w1

s1

w2

s2

w3

Fig. 2. A crash of wavefronts might be missed if unbounded triangles are handled
naively.

appropriately then the wavefronts will collide while no triangle collapse serves
as a witness of the event, see the right part.

In order to prevent such problems we proceed as follows: We consider the
stereographic projection of the plane R2 to the sphere S2, which maps the origin
to the south pole of S2 and the north pole represents all points at infinity. Every
triangle of our triangulation, including the unbounded triangles, is mapped to
a spherical triangle on S2. The infinite edges of unbounded triangles are arcs of
great circles supporting the north and south pole of S2.

We now regard an unbounded triangle of R2 as collapsed when its spherical
counterpart collapsed, i.e., when its three vertices lie on a great circle. A collapse
of an unbounded triangle indicates either an edge event or a flip event, and both
events can be handled in a similar fashion as for bounded triangles. Of course, it
would be quite cumbersome for an actual implementation to compute collapse
times of spherical triangles. Fortunately this can be avoided: The spherical coun-
terpart of an unbounded triangle ∆ collapses if the two finite vertices v1, v2 and
the north pole lie on a great circle. This is the case if and only if v1, v2 and the
south pole lie on a great circle. Hence ∆ collapses if the two finite vertices and
the origin are collinear in the plane, i.e., if the triangle formed by v1, v2 and the
origin collapses.

3 Handling Input without General Position Assumed

In this section we describe the nuts and bolts required for turning the basic
algorithm into an implementation that can handle real-world data while us-
ing standard floating-point arithmetic. Problems arise because (1) the (usually
implicit) assumption of general position (GPA) is not warranted for real-world
applications, and (2) finite-precision arithmetic does not guarantee to process all
events in the correct order. Note that working with finite precision arithmetic
precludes approaches like symbolic perturbation.

3.1 Vertices Moving at Infinite Speed

Consider the c-shaped PSLG shown in Fig. 3(a) together with a wavefront and
a part of the triangulation. As the wavefront progresses, the shaded triangle
∆1 will collapse since the edge e between vertices v1 and v2 will shrink to zero

∆1

∆2e

v1

v2 e2

e1

(a)

v3

v1 v2

v4

v3

v1 v2

v4

(b)

Fig. 3. Without general position assumed. (a) The edge event for the shaded triangle
∆1 will create a vertex moving at infinite speed. (b) A loop of concurrent flip events.

length. (Triangle ∆2 and some other triangles will collapse at the same time,
but this is irrelevant at the moment.)

The standard procedure for an edge event is to replace the two vertices v1, v2
with a new vertex that moves along the angular bisector of the two incident
wavefront edges, at the speed required to follow the wavefront propagation. In
the situation shown in Fig. 3(a), the two wavefront edges e1, e2 are parallel and
overlap at the time of the event. This means that the new vertex just created
moves along the supporting line of e1, e2, but it has to move at infinite speed
to “keep up” with the wavefront propagation since it runs perpendicular to the
direction of the wavefront propagation.

This problem is resolved by introducing triangulation vertices that are marked
as infinitely fast. Like any other vertex, such a vertex v is the central vertex of
a triangle fan of one or more triangles, ∆1, ∆2, . . . , ∆n. This fan is enclosed at v
by two overlapping wavefronts. (Otherwise v would not be infinitely fast.) This
implies that all triangles of the fan are collapsing at the time the infinitely fast
moving vertex comes into existence. Among all these triangles we choose either
∆1 or ∆n, depending on which has the shorter wavefront edge to v. Let v′ be
the vertex next to v on the shorter wavefront edge.

In the chosen triangle we process an edge event as if v had become coincident
with v′: We add the path from v to v′ as a straight skeleton arc, and v and v′

merge into a new kinetic vertex, leaving behind a straight skeleton node.

3.2 Infinite Loops of Flip Events

At first sight, it appears evident that the basic triangulation-based algorithm
terminates as there are only finitely many events to be processed. For edge and
split events an even simpler argument can be applied: Every edge and split event
reduces the number of triangles and, thus, only O(n) many edge and split events
can occur. While flip events do not result in a reduction of the triangle count,

we still make progress in the wavefront propagation if no two flip events occur
at the same time.

However, if general position is not assumed and, thus, two or more (flip)
events may occur at the same time then this standard argument for the ter-
mination of the basic triangulation-based algorithm fails. Fig. 3(b) shows two
wavefront vertices v1, v2 that move downwards and two wavefront vertices v3, v4
that move upwards. Now assume that all four vertices will become collinear at
some future point in time. Then the two triangles shown will collapse at the
same time. Hence, we have two choices on how to proceed: We can either flip the
spoke (v1, v2) or the spoke (v2, v3). If we chose to flip (v1, v2) and subsequently
(v2, v3), then we would achieve progress as all four vertices could proceed with
their movement. If, however, we chose to flip (v2, v3) then no progress would
be achieved, and a subsequent flip of (v1, v4) would get us into an infinite loop.
Modifying the set-up of Fig. 3(b) by regarding (v1, v2) as an edge of the wave-
front yields an example for a possible event loop that involves a split event and
a flip event.

This simple example can be made more complex in order to incorporate
multiple concurrent split and flip events. We emphasize that such a loop of
events can occur even if exact arithmetic is used for computing all event times
without numerical error. That is, this is a genuine algorithmic problem once we
allow inputs that trigger multiple events at the same time.

Indications for a flip event loop. One might suspect that processing an event
twice is a clear indication that we encountered the same triangulation a second
time and that the event processing ended up in a loop. However, this is not
correct, as demonstrated in Fig. 4. Assume that the vertices v1 and v6 move
downwards while the vertices v2, . . . , v5 move upwards such that all six vertices
become collinear at some point t in time, lined up in the order v1, . . . , v6, with
no two vertices coinciding. Hence, all four triangles depicted have collapse events
scheduled for time t. In Fig. 4, the collapse event chosen is indicated by shading,
and the next triangulation is obtained by flipping the dashed spoke. The triangle
∆1 is processed twice and still all eight triangulations are different and, thus,
we did not end up in a loop. However, if in (viii) we continue with ∆3 instead
of, say, ∆2, then we obtain the same triangulation as in (v) and we are indeed
caught in a loop.

In general, it is a save to handle non-flip events prior to flip events, as non-flip
events reduce the number of triangles. However, preferring concurrent non-flip
events over flip events requires that one notice the event times are identical,
which is prone to errors when using finite-precision arithmetic. And, of course,
we were still left with the problem of detecting and handling event loops that
consist only of concurrent flip events. Summarizing, two questions need to be
addressed: (i) how to detect event loops and (ii) how to cope with them. We pay
particular attention to handling event loops on finite-precision arithmetic, since
our implementation operates with double-precision or MPFR-based extended
precision arithmetic.

v1

v2

v3 v4

v5

v6

∆1

∆2

∆1

∆3

(i) (ii) (iii) (iv)

(viii) (vii) (vi) (v)

Fig. 4. Encountering an event twice need not imply a loop nor the same triangulation.

Handling flip event loops. In order to detect and handle event loops we main-
tain a history H that saves for every processed event a triple (t∗, t,∆), where
t∗ denotes the number of triangles remaining in the triangulation, ∆ denotes
the sorted vertex-triple of the collapsed triangle, and t denotes its collapse time.
These triples are stored in the same sequential order as the corresponding events
are processed. In addition, we maintain a search data structure S that stores the
triples (t∗, t,∆) in lexicographical order. Note that every non-flip event decre-
ments t∗. Thus, t∗ measures the progress of the wavefront propagation in a dis-
crete manner, and we can empty both data structures whenever t∗ is decreased.

Whenever an event is to be processed, we check whether the corresponding
triple is already stored in S. If we ended up in a loop then we are guaranteed to
find that triple already stored in S. As explained in Fig. 4, the opposite conclu-
sion need not be true. Nonetheless, once we observe that the triple (t∗, t,∆) was
already handled, we apply the following method in order to resolve a potential
loop. (No harm is caused in case of a false alarm.)

First of all, as t∗ has not changed, the entire potential loop comprises flip
events only. With exact arithmetic, all triples between the first occurrence T1 and
second occurrence T2 of (t∗, t,∆) in H have the identical value for t. With finite-
precision arithmetic, we declare all triples between T1 and T2 to have happened
at the same time, even though there may be slight deviations in time for the
triples between T1 and T2.

Next, we trace back the triples in H from T2 to T1 and mark all triangles
that are known to have collapsed due to their role in a flip event. An inductive
argument shows that the union of these triangles forms one or more polygons
that have collapsed to straight-line segments. Let P denote the one polygon that
contains ∆. We now roll back all triples between T2 and T1 that flip edges in P ,
including T2. That is, we start at T2 and visit all triples in H until we reach T1,
and if the corresponding triangle is in P we undo the flip and remove the triple
from H and S. (Recall that only flips occurred between T1 and T2.)

We now adapt the triangulation for P and for the triangles ∆e opposite to
edges e of P as follows, see Fig. 5. Let v1, . . . , vk denote the vertices of P in
sorted order with respect to the line to which P collapsed. First, we ensure that

v1 vk

v3

v2 v4 v5

e

ve

C(e)

∆e

Fig. 5. An entire polygon P (shaded) collapsed to a line. We adapt the triangulation
within P and the triangles ∆e attached to edges e of P by first inserting a monotone
chain v1, . . . , vk (bold dashed) and subsequently triangulating the resulting cells of P
and the triangles ∆e.

vivi+1 is a diagonal for all 1 ≤ i < k. That is, the path v1, . . . , vk is part of the
triangulation. This path tessellates P into cells C(e) that are bounded by two or
more edges of the path and a single edge e of P . We denote by ve the opposite
vertex of e in ∆e, see Fig. 5. Then we triangulate for each cell C(e) the area
C(e) ∪∆e such that every diagonal is incident to ve.

Let T ∗ denote the last triple in H after the rollback. We use an algorithm by
Hanke et al. [9] to append after T ∗ a sequence of triples that transfers the original
triangulation (at the state just after T ∗) into the new triangulation explained
above. Similarly, those triples are inserted into S. Each of the new triples of H
is also furnished with a pointer that points to T1. The idea behind this pointer
is that the time values of all triples between T1 and triples that point to T1 are
considered to be equal. (With exact arithmetic they all are indeed equal.) After
this reconfiguration of the triangulation and of H and S we proceed as usual.

Assume now that one of the triangles ∆e has zero area as ve was collinear
with the vertices of P , too. If our loop-detection method later reports another
potential loop because a triple T3, which is in H , would be processed twice and
T3 contains a pointer back to T1 then we repeat our resolution method presented
above. However, the only difference is now that we consider all events between
T1 and T3 to happen concurrently. That is, the rollback phase does not stop
at T3 but is extended back to T1. As a consequence, the resulting new polygon
includes the old polygon P , and we detected even more vertices that are collinear
at that particular time. As there are only finitely many triangles, at some point
in time, we obtain a largest polygon P . Hence, it is guaranteed that the above
method also terminates on finite-precision arithmetic.

Of course, we make sure to compute all numerical values used by our algo-
rithm in a canonical way. In particular, different computations of the collapse
time of the same triangle are guaranteed to yield precisely the same numerical
value. Also, note that we carefully avoid the use of precision thresholds for judg-
ing whether the collapse times of two triangles are identical: On a finite-precision
arithmetic this would be prone to errors and one could not guarantee that the
algorithm will terminate.

Sorting vertices along the collapse line. Finally, we discuss a subtle detail when
sorting the vertices v1, . . . , vk along the line to which P collapsed. First, we
determine the minimum tmin and the maximum tmax among the collapse times
of the triangles in P . Next, we determine a fitting straight line Lmin (Lmax, resp.)
of the vertices v1, . . . , vk at time tmin (tmax, resp.) by means of a least-square
fitting. Then we sort v1, . . . , vk at time tmin with respect to Lmin and obtain the
sequence vi1 , . . . , vik ; likewise for tmax and Lmax. If we obtain the same order
then we proceed with it as described above. If, however, a vertex vij has a
different position j′ in the sorted sequence with respect to tmax then we declare
the vertices vij′ and vij to coincide. Furthermore, we enforce a spoke e between
those two vertices in the triangulation and handle one of both non-flip events
that correspond to the collapse of the two triangles sharing e. Consequently, t∗

is decremented and we again have a guaranteed progress of our algorithm.

4 Experimental Results

We implemented the full wavefront-propagation algorithm in C. The resulting
code, Surfer, can be run with two arithmetic back-ends: (i) with double-precision
floating-point arithmetic, and (ii) with the arbitrary-precision library MPFR [8].

We tested Surfer on about twenty thousand polygons and PSLGs, with up
to 2.5 million vertices per data. Both real-world and contrived data of different
characteristics was tested, including CAD/CAM designs, printed-circuit board
layouts, geographic maps, space filling curves, star-shaped polygons, and random
polygons generated by RPG [3], as well as sampled spline curves, families of offset
curves, font outlines, and fractal curves. Some datasets contain also circular arcs,
which we approximated by polygonal chains in a preprocessing step.

4.1 Number of Flip Events

The best upper bound on the number

0

1

2

3

102 103 104 105 106

#
F
li
p
s/

#
V
e
r
t
ic

e
s

Fig. 6. The number of flip events is linear
in practice. (input size on the x-axis)

of flip events is O(n3), but no input is
known to cause more than O(n2) flip
events. While we provide no new the-
oretical insight on the maximum num-
ber of flip events, our tests provide
strong experimental evidence that we
can indeed expect a linear number of
flip events for all practical data. Fig. 6
shows the number of flip events per in-
put vertex (y-axis), for different input

sizes n arranged on the x-axis. On average, our algorithm had to deal with
a total of n/4 flip events. Over the entire set of twenty-thousand inputs only a
dozen cases, mostly sampled arcs, required more than 2n flip events. This clearly
demonstrates the linear nature of this number in practice. It is interesting to note
the clusters in this plot. Some clusters, but not all, correspond to different types

0.01

0.1

1

10

100

1000

103 104 105 106

ru
n
ti
m
e
(s
ec
o
n
d
s)

Surfer

BoneCGAL

10MB

100MB

1GB

103 104 105 106

m
em

o
ry

u
sa
g
e

Surfer

BoneCGAL

Fig. 7. Runtime and memory usage behavior of CGAL, Bone, and Surfer for inputs of
different sizes (x-axis). Bone and Surfer use their IEEE 754 double precision backend.

of input. For instance, a closer inspection of the test results revealed that syn-
thetic “random” polygons generated by RPG [3] require significantly more flips
than random axis-aligned polygons.

4.2 Runtime Performance Statistics

The following tests were conducted on an Intel Core i7-980X CPU clocked at
3.33 GHz, with Ubuntu 10.04. Surfer was compiled by GCC 4.4.3.

By default, Surfer uses standard IEEE 754 double-precision floating-point
arithmetic, but it can be built to use the MPFR library [8], enabling extended-
precision floating-point operations. When using floating-point arithmetic it com-
putes the straight skeleton of inputs with a million vertices in about ten seconds.
In particular, our tests confirm an O(n logn) runtime for practical data, includ-
ing any time spent handling degenerate cases.

Comparison to other skeletonizers. We compared the runtime of Surfer against
both Bone, the fastest other known implementation of a straight skeleton algo-
rithm by Huber and Held [10], and against Cacciola’s implementation [4] that is
shipped with the CGAL library, version 4.0 [5]. Input to the latter was confined
to polygonal data as the implementation cannot handle generalized PSLGs.

As can be seen in the left plot of Fig. 7, Surfer consistently outperforms
Bone by a factor of about ten. Furthermore, it is by a linear factor faster than
the CGAL code. In particular, for inputs with 104 vertices CGAL already takes
well over one hundred seconds whereas Surfer runs in a fraction of one second.
Note, though, that the CGAL code uses an exact-predicates-inexact-constructors
kernel and, thus, could be expected to be somewhat slower. However, its tim-
ings do not improve substantially when run with an inexact kernel. Further
analysis revealed an average runtime (in seconds) of 5.8 · 10−7n logn for Surfer,
1.5 · 10−5n logn for Bone, and 4.5 · 10−7n2 log n for the CGAL code.

Measurements of memory use, shown in the right plot of Fig. 7, confirm the
expected linear memory footprint of Surfer. Its memory consumption is similar
to that of Bone, while the CGAL code exhibits quadratic memory requirements.

As stated, Surfer can use the MPFR library for extended-precision floating-
point operations. Obviously, extended-precision arithmetic incurs a penalty both

in runtime and space requirements. Our tests with MPFR version 3.0.0 showed
a decrease in speed by a factor of roughly 9.64 ·10−4p

√
p+9, where p denotes the

MPFR precision. In particular, running Surfer with an MPFR precision of 100
takes about ten times as long as running it in IEEE 754 mode; at a precision of
1000 the slow-down factor is already 40. (Likely, the slow-down follows a p

√
p law

due to the increased complexity of doing multiplications with a larger number
of digits.) The memory requirement increases linearly as the MPFR precision is
increased. Roughly, the blow-up factor is modeled by 3.66 + 9.72 · 10−3p.

5 Conclusion

We explain how the triangulation-based straight-skeleton algorithm by Aich-
holzer and Aurenhammer can be extended to make it handle real-world data on
a finite-precision arithmetic. While the basic algorithm is simple to implement,
all the subtle details discussed in this paper increase its algorithmic and imple-
mentational complexity. However, extensive tests clearly demonstrate that the
resulting new code Surfer is the fastest straight-skeleton code currently available.
In particular, our tests provide experimental evidence that only a linear number
of flips occurs in the kinetic triangulation of practical data, allowing Surfer to run
in O(n logn) time in practice, despite of an O(n3 logn) theoretical worst-case
complexity.

References

1. O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner. Straight Skeletons
of Simple Polygons. In Proc. 4th Internat. Symp. of LIESMARS, pages 114–124,
Wuhan, P.R. China, 1995.

2. O. Aichholzer and F. Aurenhammer. Straight Skeletons for General Polygonal
Figures in the Plane. In A.M. Samoilenko, editor, Voronoi’s Impact on Modern
Science, Book 2, pages 7–21. Institute of Mathematics of the National Academy of
Sciences of Ukraine, Kiev, Ukraine, 1998.

3. T. Auer and M. Held. Heuristics for the Generation of Random Polygons. In Proc.
Canad. Conf. Comput. Geom. (CCCG’96), pages 38–44, Ottawa, Canada, August
1996. Carleton University Press.

4. F. Cacciola. 2D Straight Skeleton and Polygon Offsetting. In CGAL User and
Reference Manual. CGAL Editorial Board, 4.0 edition, 2012.

5. CGAL. Computational Geometry Algorithms Library. http://www.cgal.org/.
6. S.-W. Cheng and A. Vigneron. Motorcycle Graphs and Straight Skeletons. Algo-

rithmica, 47:159–182, February 2007.
7. D. Eppstein and J. Erickson. Raising Roofs, Crashing Cycles, and Playing Pool:

Applications of a Data Structure for Finding Pairwise Interactions. Discrete Com-
put. Geom., 22(4):569–592, 1999.

8. GNU. The GNU MPFR Library. http://www.mpfr.org/.
9. S. Hanke, T. Ottmann, and S. Schuierer. The Edge-Flipping Distance of Triangu-

lations. J. Universal Comput. Sci., 2:570–579, 1996.
10. S. Huber and M. Held. Theoretical and Practical Results on Straight Skeletons of

Planar Straight-Line Graphs. In Proc. 27th Annu. ACM Sympos. Comput. Geom.,
pages 171–178, Paris, France, June 2011.

